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Scientific Data Analysis Today	


•  Big science = big data, and	

•  Big data analysis => big science resources	


•  Data analysis is data intensive.	


•  Data intensity = data movement.	


•  Parallel  =  data parallel (for us)	


•  Big data => data decomposition	

•  Task parallelism, thread parallelism, while important, are 

not part of this work	

•  Most analysis algorithms are not up to the challenge	


•  Either serial, or 	


•  Communication and I/O are scalability killers	
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Example of a data flow network 

Definition of Data Analysis	

•  Any data transformation, or a network or transformations.	

•  Anything done to original data beyond its original generation.	

•  Can be visual, analytical, statistical, or data management.	
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Visual	


Particle tracing of thermal hydraulics flow 

Statistical	


Information entropy analysis of astrophysics 

Topological	


Morse-Smale Complex of combustion 

Geometric	


Voronoi tessellation of cosmology 

Data Analysis Comes in Many Flavors	




You Have Two Choices to Parallelize Data Analysis	
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or	
By hand	
 With tools	


void ParallelAlgorithm() {	

   …	

   MPI_Send();	

   …	

   MPI_Recv();	

   …	

   MPI_Barrier();	

   …	

   MPI_File_write();	

}	


void ParallelAlgorithm() {	

   …	

   LocalAlgorithm();	

   …	

   DIY_Merge_blocks();	

   …	

   DIY_File_write()	

}	
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Library	


Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	
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DIY���
helps the user write data-parallel analysis algorithms by decomposing a 

problem into blocks and communicating items between blocks. ���



Nine Things That DIY Does	
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1. Separate analysis ops from data ops	


2. Group data items into blocks	


3. Assign blocks to processes	


4. Group blocks into neighborhoods	


5. Support multiple multiple instances of 2, 3, and 4	


6. Handle time	


7. Communicate between blocks in various ways	


8. Read data and write results	


9. Integrate with other libraries and tools	


!"#$%&'(('( )"#$%&'(('( *"#$%&'((

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+



Data Movement Patterns	
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Many different analysis operations share a small set of communication 
patterns. These communication kernels together with supporting utilities for 
decomposition and I/O can be encapsulated, optimized, and reused.	


Analysis Communication 

Sort-Last Rendering Swap-Based Reduction 

Morse-Smale Complex Merge-Based Reduction 

Information Entropy Merge-Based Reduction 

Particle Tracing Neighborhood Exchange 

Voronoi Tessellation Neighborhood Exchange 

Graph layout Send-Receive 

Semi	

Regular	


Regular	
 Heterogeneous	

Data	


Homogeneous	

Data	


Irregular	




3 Communication Patterns	
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Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	


How to enqueue items 
for neighbor exchange	


•  DIY offers several 
options	


•  Send to a particular 
neighbor or neighbors, 
send to all nearby 
neighbors, send to all 
neighbors	


•  Support for periodic 
boundary conditions 
involves tagging which 
neighbors are periodic 
and calling user-defined 
transform on objects 
being sent to them	




Interaction with Other Libraries	
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DIY by design doesn’t include input or output data models. Rather than re-
inventing them, it can import and export those models.	


Import: Replicate model using DIY_Decomposed(), explicitly providing blocks and 
neighbors to DIY	

Export: Just use the other model API. DIY does not prevent you from making 
other library calls.	




Writing a DIY Program	
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Tutorial Examples	

•  Block I/O: Reading data, writing analysis 

results	

•  Static: Merge-based, Swap-based reduction, 

Neighborhood exchange	


•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis 

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with 

VTK filters	

•  R: Integrating DIY communication with R 

stats algorithms	

•  Multimodel: multiple domains and 

communicating between them	


Documentation	

•  README for installation	

•  User’s manual with description, examples 

of custom datatypes, complete API 
reference	




Published Performance and Scalability	
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DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.: 
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and 
Visualization Symposium (LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special 
Session on Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	


DIY applications	

•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of 
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11, 
Anchorage AK, May 2011. 	

•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale 
Complexes. Proceedings of IPDPS'12, Shanghai, China, 2012.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE 
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT. 	

•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.: Meshing the 
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale 
Visualization Workshop, Salt Lake City, UT.	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: Scalable 
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large 
Data Analysis and Visualization, LDAV'12, Seattle, WA.	




Particle Tracing	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	




Information Entropy	
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Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	




Morse-Smale Complex	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	
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For 1283 particles, 41 % strong scaling for total tessellation time, including I/O; 
comparable to simulation strong scaling.	


In Situ Voronoi Tessellation	




Recap and Looking Ahead	
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To Do: Research Directions	


•  Advanced decomposition	

•  Block groups	


•  Improved communication algorithms	

•  Less synchronous, more overlap 

with computation	


•  High-level communication operations	

•  Ghost cell exchange, kernel 

convolution (stencil)	

•  Load balancing	


•  Block overloading, dynamic 
reassignment	


•  Programming models	

•  MPI + X on Mira, Titan	


•  Usability	

•  Improved API	


Done: Benefits	

•  Productivity	


•  Express complex algorithms flexibly	

•  Multiple blocks per process	

•  Complete / partial reductions	

•  Neighbor inclusion and 
communication	


•  Simplify existing tasks	

•  Custom data type creation	

•  Compression	


•  Performance	

•  Published scalability	

•  Configurable algorithms	
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